时间:2024-03-06|浏览:257
用戶喜愛的交易所
已有账号登陆后会弹出下载
今天,总部位于波士顿的 Metaplane 是一家致力于改善和纠正企业数据质量问题的初创公司,宣布已在 A 轮融资中筹集了 1380 万美元。
风险投资公司 Felicis 领投,Khosla Ventures、Flybridge、Y Combinator、Stage 2 Capital、B37 和 SNR 跟投。
Metaplane 表示,计划利用本轮融资进一步开发其人工智能驱动的数据可观测平台,并成为“无可争议的最强大、可配置和神奇的信任数据解决方案”。
该公司由麻省理工学院毕业生 Kevin Hu、前 HubSpot 工程师 Peter Casinelli 和前 Appcues 开发人员 Guru Mahendran 创立,正在快速发展的数据可观测性领域与 Monte Carlo、Observe 和 Acceldata 等资金雄厚的参与者展开竞争。
去年,该公司的客户群增长了三倍,并已与 Bose、Sigma、Klaviyo 和 ClickUp 等品牌合作。
监控和标记整个数据堆栈的问题
数据已成为现代企业的驱动力,使团队不仅能够分析决策的历史模式,还能预测增长的关键方面,例如特定事件的库存计划。
生成式人工智能应用程序的激增也促使公司将不同来源的数据整合在一起,并有望推动进一步的价值。
然而,鉴于这种向数据驱动工作的巨大转变,团队很难密切关注他们所掌握的有关质量问题的所有信息。
管道变得更加复杂,有时需要处理数百或数千个来源。
Metaplane 将人工智能应用于这个问题,据称这使企业能够主动监视其数据生态系统不同层的数据事件。
“我们集成了尽可能多的数据堆栈,无论是 Fivetran 等摄取工具、Snowflake 和 BigQuery 等云数据仓库、dbt 和 Airflow 等转换和编排层、Census 和 Hightouch 等反向 ETL 工具,以及 Sigma 等 BI 工具、Tableau 和 Looker。
我们更进一步,成为唯一与 Postgres 和 MySQL 等事务数据库集成的数据可观察性产品,并捕获 Github 中 dbt Pull 请求中的问题。”Hu 于 2019 年从 MIT 的一个项目创办了这家公司,他告诉 VentureBeat。
通过机器学习监控数据质量
一旦平台与数据堆栈集成,用户就可以在频繁使用/更新的表上设置监视器,以密切关注不同的数据质量指标,例如新鲜度、行数、唯一性和空值。
整个过程大约需要 15 分钟,随后产品开始与 AI 配合使用。
As Hu explained, the system’s machine learning (ML) model trains on the data profile, using historical metadata, and then starts flagging data anomalies (even schema changes) within a day or two. The whole thing is fully automated, with alerts going directly to concerned data teams on the preferred destination for alerts.
“We use the most historical data to train our models, ensuring that we can capture seasonality and avoid repetitive alerts. Every business is unique and simply applying a one-size-fits-all model to each customer introduces a lot of inaccuracy. Unlike other monitoring tools, we also make it easy for users to tweak models to ignore one-offs or learn new trends to account for seasonal patterns and factors specific to their industry. Customers go with us because we catch issues that others can’t while keeping the noise to a minimum,” Hu explained.
Notably, in addition to monitoring metrics like freshness and volume of data, Metaplane can also go deeper to detect data problems that are very domain-specific with finer-grain controls, including monitoring for changes in data usage and cloud warehouse spend. Plus, the coverage of the data stack allows the platform to create a complete picture of column-level lineage from data source to destination and provide context on the downstream impact of issues as well as upstream root causes.
While Metaplane is not as heavily funded as its competitors Observe, Acceldata and Monte Carlo, the company has been doing pretty well in the data observability space. In 2023, its ARR grew six-fold while the customer base grew three-fold to over 100 enterprises – with known names like Klaviyo, Bose, ClickUp, Sigma, Census, GoFundMe and Ramp coming on board.
As of January 2024, the company said, these customers had run 500 million data quality checks on over 40 million data assets and over 30 million data lineage connections, detecting and resolving as many as 80,000 incidents.
“We believe that all companies should be able to trust their data, and so we enable teams to sign up and use it for free. As a result, we’ve benefited greatly from organic growth and more users have used Metaplane than any other data observability tool,” the founder emphasized.
In addition to the self-serve approach to adoption, Hu claimed that the platform’s ability to detect important issues while keeping noise to the minimum and give a complete view of the data stack makes it better than all other observability tools out there.
“我是否监控了所有可能给数据带来错误的事情?
有多少问题源于事务数据库?
有多少可以通过阻止代码更改来阻止?
回答这些问题的唯一方法是在整个数据堆栈中,在所有可能产生或影响数据问题的地方进行深度集成。
我们最近宣布与两个领先的反向 ETL 平台 Census 和 Hightouch 进行集成,并且很快还会发布更多公告。”Hu 补充道。
展望未来,该公司计划利用这笔资金专注于研发,并进一步开发其数据可观测平台,让企业团队能够放心地使用其数据资产。
其中一部分将致力于实现更多监控架构的自动化,同时引入对观察更多指标、来源和来源之间连接的支持。
“我们的愿景是,我们的平台将了解每个客户的独特需求,并根据他们不断变化的需求推荐理想的监控和警报架构。
我们将把这一点与我们监控的内容的广泛扩展相结合,添加更深入的指标和更广泛的指标,以观察数据堆栈中的所有内容,以便我们的客户始终拥有必要的上下文来查找和解决数据质量问题,”Hu 指出。