时间:2023-06-24|浏览:234
用戶喜愛的交易所
已有账号登陆后会弹出下载
其近期目标是提升哑资源感知能力,实现光网络全参量感知、光缆和资源规划预测、故障智能定位定界及风险预测;长期目标是突破光网络智能仿真决策技术,推进AI优化类场景应用,实现光网络主要运维场景的AI落地。
应用场景
韩柳燕指出,光网络是业务传送的基础。目前我国已经建成全球最大规模光纤网络,光缆总长超过5488万公里,光网络设备超过3亿端,服务超16亿移动客户、超5.4亿家庭宽带客户,以及4000余万政企客户。面对规模如此巨大光网络,引入AI的数据分析和信息提取能力,能够高效诊断网络质量,优化业务性能,减轻运营负担,改善用户体验。
与此同时,光网络以光纤等物理媒介为基础,现网运行会产生各层参数数据,具备大数据基础。其集中化管控架构,也可以为AI算法的模型训练及迭代提供天然的数据池。
韩柳燕介绍,AI在光网络中的应用场景聚焦在分析类场景、预测类场景和优化类场景。
分析类场景中,网络风险智能分析方面,AI智能识别主备业务、关联业务是否存在同缆风险,保障网络高可靠运行;业务故障智能分析方面,AI对业务故障进行历史分析,实现根因定位和定界。
预测类场景中,资源预测方面,AI对全网流量增长进行预测,为网络扩容预算评估提供支撑;资源预警方面,AI对链路的波道/容量利用率进行预警,支撑网络提前扩容。
优化类场景中,光性能智能调测调优方面,AI结合自动性能检测,实时监控关联路径的性能,保障网络处于稳定、较优状态;光网络资源智能优化方面,AI完成整网生命周期内的精细化、动态化、智能化的优化。
关键技术
韩柳燕介绍,中国移动传送网智能化架构分为网元管理、专业运维、网管平台和综合应用四级,旨在面向垂直行业、政企专线等各类客户提供智能化的创新网络,打造自服务、自修复、自优化的传送网络。
韩柳燕坦言,当前光网络AI的发展水平还处于努力提升的阶段,由于光网络自身的技术特点,在引入AI方面会面临一些独特的技术挑战,具体而言包括精准感知、AI模型泛化、主动预测和现网稳定性四方面。
针对这些挑战,中国移动总结出光网络AI四大关键技术
热点:智能化